Size Distortion and Modication of Classical Vuong Tests1

نویسندگان

  • Xiaoxia Shi
  • Quang H. Vuong
  • Yuichi Kitamura
چکیده

In this paper, I examine the …nite sample properties of the Vuong test (Vuong (1989)) for nonnested model comparison. I …nd that both the one-step and the two-step classical Vuong tests over-reject the null hypothesis when the null hypothesis is true. The over-rejection can be large in certain scenarios. A simple one-step modi…ed test is proposed. The modi…ed test applies to both overlapping models and strictly nonnested models, has correct null-rejection probability regardless of the data generating process, and has power comparable to or better than the classical Vuong tests. The results are extended to Vuong-type tests for moment condition models in a straightforward fashion. Keywords: Asymptotic size, Model comparison, Nonnested models, Size-Distortion, Two-step test, Vuong test JEL classi…cation number : C12, C52

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A nondegenerate Vuong test

In this paper, I propose a one-step nondegenerate test as an alternative to the classical Vuong (1989) tests. I show that the new test achieves uniform asymptotic size control in both the overlapping and the non-overlapping cases, while the classical Vuong tests do not. Meanwhile, the power of the new test can be substantially better than the two-step classical Vuong test and is not dominated b...

متن کامل

Supplement to “ A nondegenerate Vuong test ”

Let Y be generated from ∼N(μ υ2), where μ= √ e2·lr−1+υ − υ2, where lr ∈ {x ∈ R : e2·lr−1+υ − υ2 ≥ 0}. Under DGPs of this form, E[Λi(φ∗)] = lr . Thus, varying lr controls how far the deviation is from H0. On the other hand, when lr = 0, varying the parameter υ2 controls how large ω2 is. Setting υ2 = 1 makes ω2 = 0, and setting υ2 far from 1 makes ω2 large. First, I fix lr = 0 and study the null ...

متن کامل

On a modication of the Chebyshev collocation method for solving fractional diffiusion equation

In this article a modification of the Chebyshev collocation method is applied to the solution of space fractional differential equations.The fractional derivative is considered in the Caputo sense.The finite difference scheme and Chebyshev collocation method are used .The numerical results obtained by this way have been compared with other methods.The results show the reliability and efficiency...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009